
http://www.inria.fr/ http://www.cs.unibo.it/ http://www.lix.polytechnique.fr/ http://www.pps.jussieu.fr/

ETERNAL
Interactive Resource Analysis

Motivations

This project aims at putting together ideas from Implicit Computational

Complexity and Interactive Theorem Proving, in order to develop new

methodologies for handling quantitative properties related to program resource

consumption.

Implicit Computational Complexity. The task of verifying and

certifying quantitative properties is undecidable as soon as the considered pro-

gramming language gets close to a general purpose language. So, fully-automatic

techniques in general cannot help in classifying programs in a precise way with

respect to the amount of resources used. In particular, this is the case for all

the techniques based on the study of structural constraints on the shape of pro-

grams, like many of those actually proposed in the field of implicit computational

complexity.

Proof Assistants. Interactive theorem provers enable the combination of

automatic decision procedures and user-guided proof methods. In our framework,

undecidability will be handled through the system’s user, who is asked not only to

write the code, but also to drive the semi-automatic system in finding a proof for

the quantitative properties of interest. In order to reduce the user effort and allow

him to focus only on the critical points of the analysis, our framework will integrate

implicit computational complexity techniques as automatic decision procedures.

'

&

$

%

People

Focus Team
(INRIA Sophia Antipolis & Università di Bologna)

Ugo Dal Lago

Marco Gaboardi

Simone Martini

Barbara Petit

Parsifal Team
(INRIA Saclay)

Kaustuv Chaudhuri

Dale Miller

Lutz Straßburger

πR2 Team
(INRIA Rocquencourt & Université Denis Diderot)

Pierre-Louis Curien

Hugo Herbelin

Yann Régis-Gianas

Alexis Saurin

Methodology

We aim to develop an intermediate language (in which “real programs” could be translated), with a type system caring quantitative properties. As

such a typing is indecidable, type inference is subject to some side conditions, that remain to be proved.

Haskell

or

ML

program

P

R

with same

complexity

as P

Type T

for R,

assuming

some side

conditions

Side

conditions

S

Cost

Proof

of

S?translation
Decidable

type inference

Proof
assistant

A Typed Language for Resource Consumption.
The program is translated to an intermediate language preserving well-

typedness and resource consumption. We choose to capture these prop-

erties by means of a type system that makes quantitative aspects of

programs explicit. The use of an intermediate language allows us to

abstract over the original programming language. This intermediate

language must be expressive enough, which entails necessarily the non

decidability of its typing.

Relative Completeness. The undecidability of type infer-

ence for the type system that we will define will be limited to some

conditions of combinatorial nature, that we call side-conditions. They

cannot be verified automatically in general and they are expressed in

the language of a rather simple logic, able to express arithmetical state-

ments, like inequalities between polynomials. The previously defined

type system, however, must be relatively complete with respect to this

logic — a proof of the side conditions would automatically provide a

proof of the correctness of the typing.

Interactive and Automatic Resolution of Proof Obligations. One of the main goals of ETERNAL is the study of

interactive and automatic techniques for aiding the user in the activity of proving the side conditions written in the aforesaid logic. We expect to

be able to derive, from the various existing ICC techniques, some heuristics to assist the user in proving the side-conditions. For example, one of

these procedures might be the one induced by the fragment of System F captured by LLL (Light Linear Logic).

http://www.inria.fr/
http://www.cs.unibo.it/
http://www.lix.polytechnique.fr/
http://www.pps.jussieu.fr/

